Gabapentin prevents delayed and long-lasting hyperalgesia induced by fentanyl in rats.
نویسندگان
چکیده
BACKGROUND Opioid-induced hyperalgesia can develop rapidly after opioid exposure. Neuropathic pain and opioid-induced hyperalgesia share common pathophysiologic mechanisms. Gabapentin is effective for the management of neuropathic pain and may therefore prevent opioid-induced hyperalgesia. This study tested the effectiveness of gabapentin for prevention of long-lasting hyperalgesia induced by acute systemic fentanyl in uninjured rats. Involvement of the alpha2delta auxiliary subunits of voltage-gated calcium channels in the prevention of opioid-induced hyperalgesia by gabapentin also was assessed. METHODS Hyperalgesia was induced in male Sprague-Dawley rats with subcutaneous fentanyl (four injections, 20, 60, or 100 microg/kg per injection at 15-min intervals). Intraperitoneal (30, 75, 150, or 300 mg/kg) or intrathecal (300 microg) gabapentin was administered 30 min before or 300 min after (intraperitoneal 150 mg/kg) the first fentanyl injection. Sensitivity to nociceptive stimuli (paw-pressure test) was assessed on the day of the experiment and for several days after injections. The effects combining gabapentin with intrathecal ruthenium red (20 ng) also were assessed. RESULTS Fentanyl administration was followed by an early increase (analgesia) and by a later and sustained decrease (hyperalgesia) in nociceptive thresholds. Gabapentin did not significantly modify the early analgesic component but dose-dependently prevented the delayed decrease in nociceptive threshold. Ruthenium red partially, but significantly, opposed the prevention of opioid-induced hyperalgesia by gabapentin. CONCLUSIONS Intraperitoneal and intrathecal gabapentin prevents the development of hyperalgesia induced by acute systemic exposure to opioids. This prevention may result, at least in part, from binding of gabapentin to the alpha2delta auxiliary subunits of voltage-gated calcium channels.
منابع مشابه
Fentanyl enhancement of carrageenan-induced long-lasting hyperalgesia in rats: prevention by the N-methyl-D-aspartate receptor antagonist ketamine.
BACKGROUND Tissue damage may produce hyperalgesia, allodynia, and persistent pain. The authors recently reported that fentanyl elicits analgesia but also activates N-methyl-D-aspartate-dependent pain facilitatory processes opposing analgesia. In nonsuffering rats, this leads to a long-lasting enhancement in pain sensitivity. The current study assessed whether fentanyl could amplify carrageenan-...
متن کاملLong-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine.
BACKGROUND It has been reported that mu-opioid receptor activation leads to a sustained increase in glutamate synaptic effectiveness at the N-methyl-D-aspartate (NMDA) receptor level, a system associated with central hypersensitivity to pain. One hypothesis is that postoperative pain may result partly from the activation of NMDA pain facilitatory processes induced by opiate treatment per se. Th...
متن کاملGabapentin prevents oxaliplatin-induced central sensitization in the dorsal horn neurons in rats
Objective(s): The present study aims to study the alteration of glutamatergic transmission in the dorsal horn neurons and the effect of gabapentin on oxaliplatin-induced neuropathic pain in rats. Materials and Methods: Oxaliplatin (5 mg/kg) or saline was administered to adult male Sprague-Dawley rats. Gabapentin (60 mg/kg, IP) or vehicle was injected daily. Mechanical allodynia was assessed us...
متن کاملSpinal NK-1 receptor-expressing neurons and descending pathways support fentanyl-induced pain hypersensitivity in a rat model of postoperative pain.
The clinically important opioid fentanyl, administered acutely, enhances mechanical hypersensitivity in a model of surgical pain induced by plantar incision. Activity of neurokinin-1 (NK-1) receptor-expressing ascending spinal neurons, descending pathways originating in the rostral ventromedial medulla (RVM), and spinal dynorphin are necessary for the development and maintenance of hyperalgesia...
متن کاملIncreased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats
BACKGROUND Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesiology
دوره 108 3 شماره
صفحات -
تاریخ انتشار 2008